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What Does It Mean
*to Learn Mathematics?

Now that you have had the chance to experience do-
ing mathematics, you may have a series of questions: Can
students solve such challenging tasks? Why take the time
to solve these problems—isn't it better to do a lot of shorter
problems? Why should students be doing problems like
this, especially if they are reluctant to do so? Collectively,
these questions could be summarized as “How does ‘doing
mathematics’ relate to student learning?” The answer lies
in current theory and research on how people learn, as dis-
cussed in the following sections. The experiences we pro-
vide in classrooms should be designed to maximize learning
opportunities for students.

Constructivist Theory

Constructivism is rooted in the cognitive school of psychology
and in the work of Jean Piaget, who introduced the notion
of mental schema and developed a theory of cognitive de-
velopment in the 1930s (translated to English in the 1950s).
At the heart of constructivism is the notion that children (or
any learners) are not blank slates but rather creators of their
own learning. Integrated networks, or cognitive schemas, are
both the product of constructing knowledge and the tools
with which additional new knowledge can be constructed.
As learning occurs, the networks are rearranged, added to,
or otherwise modified. Piaget suggested that schemas can
be changed in two ways—assimilation and accommodation.
Assimilation occurs when a new concept “fits” with prior
knowledge and the new information expands an existing
network. Accommodation takes place when the new con-
cept does not “fit” with the existing network, so the brain
revamps or replaces the existing schema. Through reflective
thought, people modify their existing schemas to incorpo-
rate new ideas (Fosnot, 1996). Reflective thought means
sifting through existing ideas (also called prior knowledge)
to find those that seem to be related to the current thought,
idea, or task.

Existing schemas are often referred to as prior knowl-
edge. One basic tenet of constructivism is that people con-
struct their own knowledge based on their prior knowledge.
All people, all of the time, construct or give meaning to
things they perceive or think about. As you read these
words, you are giving meaning to them. Whether listening
passively to a lecture or actively engaging in synthesizing
findings in a project, your brain is applying prior knowledge
to make sense of the new information.

Construction of Ideas. To construct or build some-
thing in the physical world requires tools, materials, and
effort. How we construct ideas can be viewed in an analo-
gous manner. The tools we use to build understanding are

our existing ideas and knowledge. The materials we use to
build understanding may be things we see, hear, or touch—
elements of our physical surroundings. Sometimes the ma-
terials are our own thoughts and ideas. The effort required
is active and reflective thought.

In Figure 2.8 blue and red dots are used as symbols
for ideas. Consider the picture to be a small section of our
cognitive makeup. The blue dots represent existing ideas.
The lines joining the ideas represent our logical connec-
tions or relationships that have developed between and
among ideas. The red dot is an emerging idea, one that is
being constructed. Whatever existing ideas (blue dots) are
used in the construction will necessarily be connected to the
new idea (red dot) because those were the ideas that gave
meaning to it. If a potentially relevant idea (blue dot) is not
accessed by the learner when learning a new concept (red
dot), then that potential connection will not be made.

Constructing knowledge is an active endeavor on the
part of the learner (Baroody, 1987; Cobb, 1988; Fosnot,
1996; von Glasersfeld, 1990, 1996). To construct and under-
stand a new idea requires actively thinking about it. “How
does this fit with what I already know?” “How can I under-
stand this in the context of my current understanding of this
idea?” Knowledge cannot be “poured into” a learner. Put
simply, constructing knowledge requires reflective thought,
actively thinking about or mentally working on an idea.

Learners will vary in the number and nature of con-
nections they make between a new idea and existing ideas.

Figure 2.8 We use the ideas we already have (blue dots)
to construct a new idea (red dot), developing in the process a
network of connections between ideas. The more ideas used
and the more connections made, the better we understand.




The construction of an idea is going to be different for each
learner, even within the same environment or classroom.
Though learning is constructed within the self, the classroom
culture contributes to learning while the learner contributes
to the culture in the classroom (Yackel & Cobb, 1996). Yackel
and Cobb argue that the learner and the culture of the class-
room are reflexively related—one influencing the other.

Sociocultural Theory

In the same way that the work of Piaget led to construc-
tivism, the work of Lev Vygotsky, a Russian psychologist,
has greatly influenced sociocultural theory. Vygotsky’s work
also emerged in the 1920s and 1930s, though it was not
translated until the late 1970s. There are many concepts
that these theories share (for example the learning pro-
cess as active meaning-seeking on the part of the learner),
but sociocultural theory has several unique foundational
concepts. One is that mental processes exist between and
among people in social learning settings, and that from
these social settings the learner moves ideas into his or her
own psychological realm (Forman, 2003).

Second, the way in which information is internalized
(or learned) depends on whether it was within a learner’s
zone of proximal development (ZPD), which is the dif-
ference between a learner’s assisted and unassisted perfor-
mance on a task (Vygotsky, 1978). Simply put, the ZPD
refers to a “range” of knowledge that may be out of reach
for a person to learn on his or her own, but is accessible if
the learner has support of peers or more knowledgeable
others. “[T]he ZPD is not a physical space, but a symbolic
space created through the interaction of learners with more
knowledgeable others and the culture that precedes them”
(Goos, 2004, p. 262). Both Cobb (1994) and Goos (2004)
suggest that in a true mathematical community of learners
there is something of a common ZPD that emerges across
learners as well as the ZPDs of individual learners.

Another major concept in sociocultural theory is se-
miotic mediation, a term used to describe how information
moves from the social plane to the individual plane. It is
defined as the “mechanism by which individual beliefs, at-
titudes, and goals are simultaneously affected and affect so-
ciocultural practices and institutions” (Forman & McPhail,
1993, p. 134). Semiotic mediation involves interaction
through language but also through diagrams, pictures, and
actions. Language and these other objects and actions are
considered the “tools” of mediation.

Social interaction is essential for mediation. The na-
ture of the community of learners is affected by not just
the culture the teacher creates, but the broader social and
historical culture of the members of the classroom (For-
man, 2003). In summary, from a sociocultural perspective,
learning is dependent on the learners (working within their
ZPD), the social interactions in the classroom, and the cul-
ture within and beyond the classroom.

What Does It Mean to Learn Mathematics? 21

Implications for Teaching Mathematics

It is not necessary to choose between a social constructivist
theory that favors the views of Vygotsky and a cognitive
constructivism built on the theories of Piaget (Cobb, 1994).
In fact, when considering classroom practices that maxi-
mize opportunities to construct ideas, or to provide tools
to promote mediation, they are quite similar. Classroom
discussion based on students’ own ideas and solutions to
problems is absolutely “foundational to children’s learning”
(Wood & Turner-Vorbeck, 2001, p. 186).

It is important to restate that a learning theory is not
a teaching strategy, but the theory informs teaching. In this
section teaching strategies that reflect constructivist and
sociocultural perspectives are briefly discussed. You will
see these strategies revisited in Chapters 3 and 4, where
a problem-based model for instruction is discussed, and
throughout the content chapters, where you learn how to
apply these ideas to specific areas of mathematics.

Build New Knowledge from Prior Knowledge. Con-
sider the following task, posed to a class of fourth graders
who are learning division of whole numbers.

Four children had 3 bags of M&M:s. They decided to open
all 3 bags of candy and share the M&Ms fairly. There
were 52 M&M candies in each bag. How many M&M
candies did each child get? (Campbell & Johnson, 1995,
pp- 35-36)

Note: You may want to select a nonfood context, such as
decks of cards, or any culturally relevant or interesting item
that would come in similar quantities.

Consider how you might introduce division to fourth
graders and what your expectations might be for this problem
as a teacher grounding your work in constructivist or socio-
cultural learning theory.

The student work samples in Figure 2.9 are from a
classroom that is grounded in constructivist ideas—that
students should develop, or invent, strategies for doing
mathematics using their prior knowledge, therefore mak-
ing connections among mathematics concepts.

Marlena interpreted the task as “How many sets of 4
can be made from 156?” She first used facts that were either
easy or available to her: 10 x 4 and 4 x 4. These totals she
subtracted from 156 until she got to 100. This seemed to
cue her to use 25 fours. She added her sets of 4 and knew
the answer was 39 candies for each child. Marlena is using
an equal subtraction approach and known multiplication
facts. Note the “blue dots” that she is connecting in order to
begin learning about the newer concept of division. While
this is not the most efficient approach, it demonstrates that
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Figure 2.9 Two fourth-grade children invent unique solu-
tions to a computation.

Source: Reprinted with permission from P. F. Campbell and M. L. Johnson,
“How Primary Students Think and Learn,” in I. M. Carl (Ed.), Prospects for
School Mathematics (pp. 21-42), copyright © 1995 by the National Coun-
cil of Teachers of Mathematics, Inc. www.nctm.org.
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Marlena understands the concept of division and can move
towards more efficient approaches.

Darrell’s approach was more directly related to the
sharing context of the problem. He formed four columns
and distributed amounts to each, accumulating the amounts
mentally and orally as he wrote the numbers. Darrell used a
counting-up approach, first giving each student 20 M&Ms,
seeing they could get more, distributed 5, then 10, then
singles until he reached the total. Like Marlena, Darrell
used facts and procedures that he knew. The context of
sharing provided a “blue dot” for Darrell, as he was able to
think about the problem in terms of equal distribution.

Provide Opportunities to Talk about Mathematics.
Learning is enhanced when the learner is engaged with
others working on the same ideas. A worthwhile goal is
to create an environment in which students interact with
each other and with you. The rich interaction in such a

classroom allows students to engage in reflective thinking
and to internalize concepts that may be out of reach without
the interaction and input from peers and their teacher. In
discussions with peers, students will be adapting and ex-
panding on their existing networks of concepts.

Build In Opportunities for Reflective Thought. Class-
rooms need to provide structures and supports to help stu-
dents make sense of mathematics in light of what they know.
For a new idea you are teaching to be interconnected in a
rich web of interrelated ideas, children must be mentally
engaged. They must find the relevant ideas they possess and
bring them to bear on the development of the new idea. In
terms of the dots in Figure 2.8, we want to activate every
blue dot students have that is related to the new red dot we
want them to learn.

As you will see in Chapter 3 and throughout this book,
a significant key to getting students to be reflective is to
engage them in problems where they use their prior knowl-
edge as they search for solutions and create new ideas in
the process. The problem-solving approach requires not
just answers but also explanations and justifications for
solutions.

Encourage Multiple Approaches. Teaching should
provide opportunities for students to build connections
between what they know and what they are learning. The
student whose work is presented in Figure 2.10 may not
understand the algorithm she is trying to use. If instead she
was asked to use her own approach to find the difference,
she might be able to get to a correct solution and build on
her understanding of place value and subtraction.

Even learning a basic fact, like 7 x 8, can have better
results if a teacher promotes multiple strategies. Imagine a
class where children discuss and share clever ways to fig-
ure out the product. One child might think of 5 eights and
then 2 more eights. Another may have learned 7 x 7 and
added on 7 more. Still another might take half of the sevens
(4 x 7) and double that. A class discussion sharing these
ideas brings to the fore a wide range of useful mathematical
“dots” relating addition and multiplication concepts.

In contrast, facts such as 7 x 8 can be learned by rote
(memorized). While that knowledge is still constructed, it
is not connected to other knowledge. Rote learning can
be thought of as a “weak construction” (Noddings, 1993).
Students can recall it if they remember it, but if they forget,
they don’t have 7 x 8 connected to other knowledge pieces
that would allow them to redetermine the fact.

Treat Errors as Opportunities for Learning. When
students make errors, it can mean a misapplication of their
prior knowledge in the new situation. Remember that from
a constructivist perspective, the mind is sifting through
what it knows in order to find useful approaches for the
new situation. Knowing that children rarely give random
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Figure 2.1 O This student’s work indicates that she has a
misconception about place value and regrouping.

responses (Ginsburg, 1977; Labinowicz, 1985) gives insight
into addressing student misconceptions and helping stu-
dents accommodate new learning. For example, students
comparing decimals may incorrectly apply “rules” of whole
numbers, such as “the longer the number the bigger” (Mar-
tinie, 2007; Resnick, Nesher, Leonard, Magone, Omanson,
& Peled, 1989).

Figure 2.10 is an example of a student incorrectly ap-
plying what she learned about regrouping. If the teacher
tries to help the student by re-explaining the “right” way
to do the problem, the student loses the opportunity to
reflect on and correct her misconceptions. If the teacher
instead asks the student to explain her regrouping process,
the student must engage her reflective thought and think
about what was regrouped and how to keep the number
equivalent.

Scaffold New Content. The concept of scaffolding, which
comes out of sociocultural theory, is based on the idea that
a task otherwise outside of a student’s ZPD can become ac-
cessible if it is carefully structured. For concepts completely
new to students, the learning requires more structure or
assistance, including the use of tools like manipulatives or
more assistance from peers. As students become more com-
fortable with the content, the scaffolds are removed and the
student becomes more independent. Scaffolding can pro-
vide support for those students who may not have a robust
collection of “blue dots.”

Honor Diversity. Finally, and importantly, these theories
emphasize that each learner is unique, with a different col-
lection of prior knowledge and cultural experiences. Since
new knowledge is built on existing knowledge and experi-
ence, effective teaching incorporates and builds on what
the students bring to the classroom, honoring those experi-
ences. Thus, lessons begin with eliciting prior experiences,
and understandings and contexts for the lessons are selected
based on students’ knowledge and experiences. Some stu-
dents will not have the “blue dots” they need—it is your job
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to provide experiences where those blue dots are developed
and then connected to the concept being learned.
Classroom culture influences the individual learning
of your students. As stated previously, you should support
a range of approaches and strategies for doing mathematics.
Students’ ideas should be valued and included in classroom
discussion of the mathematics. This shift in practice, away
from the teacher telling one way to do the problem, es-
tablishes a classroom culture where ideas are valued. This
approach values the uniqueness of each individual.

What Does It Mean to

| % Understand Mathematics?

“ 7 Both constructivist and sociocultural theories em-
phasize the learner building connections (blue dots to the
red dots) among existing and new ideas. So you might be
asking, “What is it they should be learning and connect-
ing?” Or “What are those blue dots?” This section focuses
on mathematics content required in today’s classrooms.

It is possible to say that we know something or we do
not. That is, an idea is something that we either have or
don’t have. Understanding is another matter. For example,
most fifth graders know something about fractions. Given
the fraction £, they likely know how to read the fraction and
can identify the 6 and 8 as the numerator and denominator,
respectively. They know it is equivalent to 3 and that it is
more than 1.

Students will have different understandings, however, of
such concepts as what it means to be equivalent. They may
know that £ can be simplified to ; but not understand that
2 and £ represent identical quantities. Some may think that
simplifying $ to 2 makes it a smaller number. Some students
will be able to create pictures or models to illustrate equiva-
lent fractions or will have many examples of how $ is used
outside of class. In summary, there is a range of ideas that
students often connect to their individualized understanding
of a fracion—each student brings a different set of blue
dots to his or her knowledge of what a fraction is.

Understanding can be defined as a measure of the qual-
ity and quantity of connections that an idea has with existing
ideas. Understanding is not an all-or-nothing proposition. It
depends on the existence of appropriate ideas and on the
creation of new connections, varying with each person
(Backhouse, Haggarty, Pirie, & Stratton, 1992; Davis, 1986;
Hiebert & Carpenter, 1992; Janvier, 1987; Schroeder &
Lester, 1989).

One way that we can think about understanding is that
it exists along a continuum from a relational understand-
ing—knowing what to do and why—to an instrumental
understanding—doing without understanding (see Figure
2.11). The two ends of this continuum were named by
Richard Skemp (1978), an educational psychologist who
has had a major influence on mathematics education.




24  Chapter 2 Exploring What It Means to Know and Do Mathematics

Relational
Understanding

Continuum of Understanding

N Instrumental
g "b Understanding

Figure 2.11 Understanding is a measure of the quality and quantity of connections that a new idea has
with existing ideas. The greater the number of connections to a network of ideas, the better the understanding.

In the { example, the student who can draw diagrams,
give examples, find equivalencies, and approximate the size
of £ has an understanding toward the relational end of the
continuum, while a student who only knows the names and
a procedure for simplifying { to ; has an understanding
more on the instrumental end of the continuum.

Mathematics Proficiency

Much work has emerged since Skemp’s classic work on re-
lational and instrumental understanding focusing on what
mathematics should be learned, all of it based on the need
to include more than learning procedures.

Conceptual and Procedural Understanding. Concep-
tual understanding is knowledge about the relationships
or foundational ideas of a topic. Procedural understanding
is knowledge of the rules and procedures used in carrying
out mathematical processes and also the symbolism used
to represent mathematics. Consider the task of multiply-
ing 47 x 21. The conceptual understanding of this prob-
lem includes such ideas as that multiplication is repeated
addition and that the problem could represent the area of
a rectangle with dimensions of 47 inches and 21 inches.
The procedural knowledge could include the standard al-
gorithm or invented algorithms (e.g., multiplying 47 by
10, doubling it, then adding one more 47). The ability to
employ invented strategies, such as the one described here,
requires a conceptual understanding of place value and
muldplication.

In fact, it is well established in research on mathemat-
ics learning that conceptual understanding is an important
component of procedural proficiency (Bransford, Brown,
& Cocking, 2000; Nadonal Mathematics Advisory Panel,
2008; NCTM, 2000). The Principles and Standards Learning
Principle states it well:

“The alliance of factual knowledge, procedural
. proficiency, and conceptual understanding
makes all three components usable in powerful

ways” (p. 19). ¢

Recall the two students who used their own invented
procedure to solve 156 + 4 (see Figure 2.9). Clearly, there
was an active and useful interaction between the procedures
the children invented and the concepts they knew about
multiplication and were constructing about division.

The common practice of teaching procedures in
the absence of conceptual understanding leads to errors
and a dislike of mathematics. One way to help your stu-
dents (and you) think about all the interrelated ideas for
a concept is to create a network or web of associations,
as demonstrated in Figure 2.12 for the concept of ratio.
Note how much is involved in having a relational under-
standing of ratio. Compare that to the instrumental treat-
ment of ratio in some textbooks that have a single lesson
on the topic with prompts such as “If the ratio of girls to
boys is 3 to 4, then how many girls are there if there are
24 boys?”

Five Strands of Mathematical Proficiency. While con-
ceptual and procedural understanding of any concept are
essential, they are not sufficient. Being mathematically pro-
ficient means that people exhibit behaviors and dispositions
as they are “doing mathematcs.” Adding It Up (NRC, 2001),
an influential report on how students learn mathematics,
describes five strands involved in being mathematically
proficient: (1) conceptual understanding, (2) procedural
fluency, (3) strategic competence, (4) adaptive reasoning,
and (5) productive disposition. Figure 2.13 illustrates these
interrelated and interwoven strands, providing a definition
of each.

Recall the problems that you solved in the “Let’s Do
Some Mathematics” section. In approaching each problem,
if you felt like you could design a strategy to solve it (or try
new approaches if one didn’t work), then that is evidence of
strategic competence. In each of the problems selected, you
were asked to explain or justify solutions. If you were able
to reason about a pattern and tell how you knew it would
work, this is evidence of adaptive reasoning. Finally, if you
were committed to making sense of and solving those tasks,
knowing that if you kept at it, you would get to a solution,
then you have a productive disposition.
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Scale: The scale on the map
shows 1 inch per 50 miles.

Division: The ratio 3 is to

4 is the same as 3 + 4.

| Trigonometry: All trig
. functions are ratios.

Comparisons: The ratio of sunny
days to rainy days is greater in the
South than in the North.

Unit prices: 12 0z./ $1.79.
That's about 60¢ for 4 oz.
or $2.40 for a pound.

Business: Profit and loss are figured
| as ratios of income to total cost.

Geometry: The ratio of
circumference to diameter is
always =, or about 22 to 7.
Any two similar figures have
corresponding measurements
that are proportional {in the
same ratio).

Slopes of lines (algebra) and slopes of roofs
(carpentry): The ratio of the rise to the run is %.

Figure 2.12 Potential web of ideas that could contribute to the understanding of “ratio.”

The last three of the five strands develop only when
students have experiences that involve these processes. We
hope you have noticed that the terms used here are very
similar to the ones in the previous learning theory discus-
sion. Reflection, using prior knowledge, social interaction,

Conceptual understanding:
comprehension of mathematical
concepts, operations, and
relations.

Strategic competence:
ability to formulate,
represent, and solve
mathematics problems,

Procedural fluency:
skill in carrying out
procedures flexibly,
accurately, efficiently,
and appropriately.

Adaptive reasoning:
capagcity for logical
thought, reflection,
explanation, and
justification

Productive disposition: 5
habitual inclination to |
see mathematics as

g sensible, useful, and

| worthwhile, coupled
with a belief in diligence |
and one’s own efficacy.

A

Intertwined strands of proficiency

Figure 2.13 Adding It Up describes five strands of mathe-
matical proficiency.

Source: Adding It Up: Helping Children Learn Mathematics, p. 5. Reprinted
with permission from the National Academies Press, copyright @ 2001,
National Academy of Sciences.

and solving problems in a variety of ways, among other
strategies, are essential to learning and therefore becoming
mathematically proficient.

Implications for Teaching Mathematics

If we accept the notion that understanding has both qualita-
tive and quantitative differences from knowing, the ques-
tion “Does she know it?” must be replaced with “How does
she understand it? What ideas does she connect with it?” In
the following examples, you will see how different children
may well develop different ideas about the same knowledge
and, thus, have different understandings.

Early Number Concepts. Consider the concept of “7”
as constructed by a child in the first grade. A first grader
most likely connects “7” to the counting procedure and the
construct of “more than,” probably understanding it as less
than 10 and more than 2. What else will this child eventu-
ally connect to the concept of 7? It is 1 more than 6; it is 2
less than 9; it is the combination of 3 and 4 or 2 and §; it is
odd; it is small compared to 73 and large compared to it
it is the number of days in a week; it is “lucky”; it is prime;
and on and on. The web of potential ideas connected to a
number can grow large and involved.

Computation. Computation is much more than memo-
rizing a procedure; analyzing a student’s strategy provides a
good opportunity to see how understanding can differ from
one child to another. For addition and subtraction with two-
or three-digit numbers, a flexible and rich understanding of
numbers and place value is very helpful. How might differ-
ent children approach the task of finding the sum of 37 and
28? For children whose understanding of 37 is based only
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on counting, the use of counters and a count-all procedure
is likely (see Figure 2.14(a)). A student may use the tradi-
tional algorithm, lining up the digits and adding the ones
and then the tens, but not understand why they are carrying
the one. When procedures are not connected to concepts
(in this case place-value concepts), errors and unreasonable
answers are more common (see Figure 2.14(b)).

Students can solve the problem using an invented ap-
proach (see Figure 2.14(c) & (d)). The strategies used here
show that the students know that numbers can be broken
apart in many different ways and that the sum of two num-

(a)
. Count 37
- 2e0% .... T Count 28
SeSSEeiT o382
® :..::.o
Countall: 1,2,3,4,...,64,65
(b)
27 >1
+ 2% +2¢
Te2
LS 515

Traditional algorithm Errors are often made

(c)

Toke Lfrom the 37 Fland 30 isL1
iv\d put it With but yowhaw 1o
;\;‘ 29 4o yvae_Bo. take 2 away-(.,s’.
~ 1-7 =05
BKI +2% ;
25 +20=(5
(d)
37 and 20 more—47, 57, L58, 59, 60, 61, 62, 63, 64, 65
(counting:;fingers)
4
s4€0¢ Ay
c%
2 ¢h
37,47,57

Figure 2.14 A range of computational examples showing
different levels of understanding.

bers remains the same if you add something to one number
and subtract an equal amount from the other. These stu-
dents can add in flexible ways.

Benefits of a Relational
Understanding

To teach for a rich or relational understanding requires a
lot of work and effort. Concepts and connections develop
over time, not in a day. Tasks must be selected that help
students build connections. The important benefits to be
derived from relational understanding make the effort not
only worthwhile but also essential.

Effective Learning of New Concepts and Procedures.
Recall what learning theory tells us—students are actively
building on their existing knowledge. The more robust their
understanding of a concept, the more connections students
are building, and the more likely it is they can connect new
ideas to the existing conceptual webs they have. Fraction
knowledge and place-value knowledge come together to
make decimal learning easier, and decimal concepts directly
enhance an understanding of percentage concepts and pro-
cedures. Without these and many other connections, chil-
dren will need to learn each new piece of information they
encounter as a separate, unrelated idea.

Less to Remember. When students learn in an instru-
mental manner, mathematics can seem like endless lists of
isolated skills, concepts, rules, and symbols that often seem
overwhelming to keep straight. Constructivists talk about
teaching “big ideas” (Brooks & Brooks, 1993; Hiebert et
al., 1996; Schifter & Fosnot, 1993). Big ideas are really just
large networks of interrelated concepts. Frequently, the
network is so well constructed that whole chunks of in-
formation are stored and retrieved as single entities rather
than isolated bits. For example, knowledge of place value
subsumes rules about lining up decimal points, ordering
decimal numbers, moving decimal points to the right or left
in decimal-percent conversions, rounding and estimating,
and a host of other ideas.

Increased Retention and Recall. Memory is a process
of retrieving information. Retrieval of information is more
likely when you have the concept connected to an entire
web of ideas. If what you need to recall doesn’t come to
mind, reflecting on ideas that are related can usually lead
you to the desired idea eventually. For example, if you forget
the formula for surface area of a rectangular solid, reflecting
on what it would look like if unfolded and spread out flat
can help you remember that there are six rectangular faces
in three pairs that are each the same size.

Enhanced Problem-Solving Abilities. The solution of
novel problems requires transferring ideas learned in one




context to New situations. When concepts are embedded in
a rich network, transferability is significantly enhanced and,
thus, so is problem solving (Schoenfeld, 1992). When stu-
dents understand the relationship between a situation and
a context, they are going to know when to use a particular
approach to solve a problem. While many students may
be able to do this with whole-number computation, once
problerns increase in difficulty and numbers move to ra-
tional numbers or unknowns, students without a relational
understanding are not able to apply the skills they learned
to solve new problems.

Improved Attitudes and Beliefs. Relational understand-
ing has an affective as well as a cognitive effect. When ideas
are well understood and make sense, the learner tends to de-
velop a positive self-concept about his or her ability to learn
and understand mathematics. There is a definite feeling of
«] can do this! I understand!” There is no reason to fear or
to be in awe of knowledge learned relationally. At the other
end of the continuum, instrumental understanding has the
potential of producing mathematics anxiety, a real phenom-
enon that involves fear and avoidance behavior.

Multiple Representations to Support
Relational Understanding

The more ways that children are given to think about and
test an emerging idea, the better chance they will correctly
form and integrate it into a rich web of concepts and there-
fore develop a relational understanding. Lesh, Post, and
Behr (1987) offer five “representations” for concepts (see
Figure 2.15). Their research has found that children who
have difficulty translating a concept from one representa-
tion to another also have difficulty solving problems and
understanding computations. Strengthening the ability to
move between and among these representations improves
student understanding and retention. Discussion of oral
language, real-world situations, and written symbols is
woven into this chapter, but it is important that you have
a good perspective on how manipulatives and models can
help or fail to help children construct ideas.

Models and Manipulatives. A model for a mathematical
concept refers to any object, picture, or drawing that repre-
sents the concept or onto which the relationship for that
concept can be imposed. In this sense, any group of 100
objects can be a model of the concept “hundred” because
we can impose the 100-to-1 relationship on the group and
a single element of the group. Manipulatives are physical
objects that students and teachers can use to illustrate and
discover mathematical concepts, whether made specifically
for mathematics, like connecting cubes, or objects that were
created for other purposes.

It is incorrect to say that a model “illustrates” a con-
cept. To illustrate implies showing. Technically, all that you
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Figure 2.15 Five different representations of mathemati-
cal ideas. Translations between and within each can help de-
velop new concepts.

actually see with your eyes is the physical object; only your
mind can impose the mathematical relationship on the ob-
ject (Suh, 2007; Thompson, 1994).

Models can be a testing ground for emerging ideas. Itis
sometimes difficult for students (of all ages) to think about
and test abstract relationships using only words or symbols.
For example, to explore the idea of area of a triangle, know-
ing the area of a parallelogram, requires the use of pictures
and/or manipulatives to build the connections. A variety of
models should be accessible for students to select and use
freely. You will undoubtedly encounter situations in which
you use a model that you think clearly illustrates an idea
but a student just doesn’t get it, whereas a different model
is very helpful.

Examples of Models. Physical materials or manipula-
tives in mathematics abound—from common objects such
as lima beans and string to commercially produced materi-
als such as wooden rods (e.g., Cuisenaire rods) and blocks
(e.g., Pattern Blocks). Figure 2.16 shows six models, each
representing a different concept, giving only a glimpse into
the many ways each manipulative can be used to support the
development of mathematics concepts and procedures.

Consider each of the concepts and the corresponding
model in Figure 2.16. Try to separate the physical model from
the relationship that you must impose on the model in order to
“see” the concept.
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Base-ten concepts (ones, tens, hundreds) are
frequently modeled with strips and squares.
Sticks and bundles of sticks are also commonly used.

Countable objects can be used to model “number”
and related ideas such as “one more than.

(b) (e)

“Length” involves a comparison of the length attribute of “Chance” can be modeled by comparing outcomes

different objects. Rods can be used to measure length. of a spinner.
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“Rectangles” can be modeled on a dot grid. They
involve length and spatial relationships.

“Positive” and “negative” integers can be modeled with
arrows with different lengths and directions.

Figure 2.16 Examples of models to illustrate mathematics concepts.

The examples in Figure 2.16 are models that can show
the following concepts:

measure of an object is a comparison relationship of the
length of the object to the length of the unit.

c. The concept of “rectangle” includes both spatial and
length relationships. The opposite sides are of equal
length and parallel and the adjacent sides meet at right

a. The concept of “6” is a relationship between sets that
can be matched to the words one, two, three, four, five,

or six. Changing a set of counters by adding one
changes the relationship. The difference between the
set of 6 and the set of 7 is the relationship “one more

than.”

b. The concept of “measure of length” is a comparison of

the length attribute of different objects. The length

angles.

. The concept of “hundred” is not in the larger square

but in the relationship of that square to the strip (“ten”)
and to the little square (“one”).

. “Chance” is a relationship between the frequency of an

event’s happening compared with all possible out-




comes. The spinner can be used to create relative fre-
quencies. These can be predicted by observing
relationships of sections of the spinner.

£, The concept of a “negative integer” is based on the
relationships of “magnitude” and “is the opposite of.”
Negative quantities exist only in relation to positive
quantities. Arrows on the number line model the op-
posite of relationship in terms of direction and size or
magnitude relationship in terms of length.

Ineffective Use of Models and Manipulatives. In addi-
tion to not making the distinction between the model and
the concept, there are other ways that models or manipula-
tives can be used ineffectively. One of the most widespread
misuses occurs when the teacher tells students, “Do as I
do.” There is a natural temptation to get out the materials
and show children exactly how to use them. Children mimic
the teacher’s directions, and it may even look as if they un-
derstand, but they could be just mindlessly following what
they see. It is just as possible to get students to move blocks
around mindlessly as it s to teach them to “invert and mul-
tiply” mindlessly. Neither promotes thinking or aids in the
development of concepts (Ball, 1992; Clements & Battista,
1990; Stein & Bovalino, 2001).

A natural result of overly directing the use of models is
that children begin to use them as answer-getting devices
rather than as tools used to explore a concept. For example,
if you have carefully shown and explained to children how
to get an answer to a multiplication problem with a set of
base-ten blocks, then students may set up the blocks to get
the answer but not focus on the patterns or processes that
can be seen in modeling the problem with the blocks. A
mindless procedure with a good manipulative is still just a
mindless procedure.

Conversely, leaving students with insufficient focus
or guidance results in nonproductive and unsystematic
investigation (Stein & Bovalino, 2001). Students may be
engaged in conversations about the model they are using,
but if they do not know what the mathematical goal is, the
manipulative is not serving as a tool for developing the
concept.

Technology-Based Models. Technology provides an-
other source of models and manipulatives. There are web-
sites, such as the Utah State University National Library
of Virtual Manipulatives, that have a range of manipula-
tives available (e.g., geoboards, base-ten blocks, spinners,
number lines). Virtual manipulatives are a good addition to
physical models, as some students will prefer the electronic
version; moreover, they may have access to these tools out-
side of the classroom.
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It is important to include calculators as a tool.
The calculator models a wide variety of numeric
relationships by quickly and easily demonstrating
the effects of these ideas. For example, you can skip-count
by hundredths from 0.01 (press 0.01 [+].01 (=], (=], =...)
or from another beginning number such as 3 (press [+]0.01

(=), (=, [E] ...). How many presses of (=] are required to
get from 3 to 4? Many more similar ideas are presented in

Chapter 7.
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thinking.

tion for the approach to each topic
in the content chapters. This chap-
ter began with discussing what do-
ing mathematics is and challenging
you to do some mathematics. Each
of these tasks offered opportuni-
ties to make connections among
mathematics concepts—connecting the blue dots.

Second, you read about learning theory—the impor-
tance of having opportunities to connect the dots. The
best learning opportunities, according to constructivism
and sociocultural theories, are those that engage learn-
ers in using their own knowledge and experience to solve
problems through social interactions and reflection. This is
what you were asked to do in the four tasks. Did you learn
something new about mathematics? Did you connect an
idea that you had not previously connected?

Finally, you read about understanding—that to have
the relational knowledge (knowledge where blue dots are
well connected) requires conceptual and procedural un-
derstanding, as well as other proficiencies. The problems
that you solved in the first section included a focus on con-
cepts and procedures while placing you in a position to use
strategic competence, adaptive reasoning, and productive
disposition.

This chapter focused on connecting the dots between
theory and practice—building a case that your teaching
must focus on opportunities for students to develop their
own networks of blue dots. As you plan and design instruc-
tion, you should constantly reflect on how to elicit prior
knowledge by designing tasks that reflect the social and
cultural backgrounds of students, to challenge students to
think critically and creatively, and to include a comprehen-
sive treatment of mathematics.




